(Translation)

ABOUT THE HARMONIC QUADRILATERAL

Phan Nguyễn Văn Trường - Lục Đình Khánh - Bùi Hà Đăng Quang

Abstract

. Exploring the world of geometry, we encounter a special quadrilateral with unique properties, known as the beautiful quadrilateral. Since the problems in this topic largely concerned with the idea of harmonic points, a more appropriate term is harmonic quadrilateral. In this small article, we represent some fundamental properties of harmonic quadrilateral and their application in solving geometry problems.

1 Fundamental blocks

Definition 1.1. A cyclic quadrilateral for which the product of the opposite sides is the same, is called a harmonic quadrilateral. In a particular case, a cyclic quadrilateral $A B C D$ such that $\frac{A B}{A D}=\frac{C B}{C D}$ is a harmonic quadrilateral.

Example 1.1. Given a circle ω and a point M outside it. Let $M A$ and $M B$ be tangents to the circle at A and B. Let l be an arbitrary line through M which intersects the circle at P and Q. Then $A P B Q$ is a harmonic quadrilateral.

Proof.

It suffices to show that $\frac{A Q}{A P}=\frac{B Q}{B P}$. Since we have $\triangle M A Q$ is similar to $\triangle M P A$,

$$
\frac{A Q}{A P}=\frac{M Q}{M P} .
$$

Additionally, $\triangle M B Q$ is also similar to $\triangle M P B$, so

$$
\frac{B Q}{B P}=\frac{M Q}{M P} .
$$

Combining these, we obtain the desired result. This implies that the quadrilateral $A Q B P$ is harmonic.

Comment: In the above example, we clearly observe that if a quadrilateral inscribed in a circle has its two tangents at two opposite vertices met at a point that lies on its diagonal, then the quadrilateral is harmonic. Naturally, we may wonder if the inversed statement is correct: every harmonic quadrilateral inscribed in a circle has its two tangents at two opposite vertices met at a point that lies on its diagonal. The answer will be revealed in later part.

Property 1.1. Let the harmonic quadrilateral $A B C D$ be inscribed the circle (O) and $\frac{A B}{B C}=$ $\frac{D A}{D C}=k$. Show that (O) and a circle of Apollonius with ratio k are orthocentric.

Proof.

The internal and external bisector of $\angle A B C$ intersect the line $A C$ at E and F, respectively. Note that the circle (I) with diameter $E F$ is the circle of Apollonius with ratio k. Clearly, B and D lie on (I). We only need to prove that $I B$ is tangent to the circle (O).

Indeed, we have $(A C E D)=-1$ and I is the midpoint of $E F$ then $I E^{2}=I A \cdot I C$. Furthermore, since $\triangle I B E$ is the isosceles triangle with $I B=I E$, we deduce $I B^{2}=I A \cdot I C$, which implies that $I B$ is tangent to the circle (O). The proof is completed.

Property 1.2. The quadrilateral $A B C B$ inscribed the circle (O) is harmonic iff $A C$, the tangents to (O) at B and D are concurrent. ($A C$ and $B D$ are not diameters)

Proof. This property can be deduced from Example 1.1. and Property 1.1..
Property 1.3. In a harmonic quadrilateral $A B C D, A C \cdot B D=2 A B \cdot C D=2 B C \cdot A D$.
Proof. Since $A B C D$ is harmonic, $\frac{A B}{A D}=\frac{C B}{C D}$, which is equivalent to $A B \cdot C D=A D \cdot C B$.
On the other hand, the quadrilateral $A B C D$ is cyclic. Then, applying Ptolemy's theorem, we get $A C \cdot B D=A B \cdot C D+A D \cdot B C$. Hence, $A C \cdot B D=2 A B \cdot C D=2 B C \cdot A D$.

Property 1.4. Let $A B C D$ be a harmonic quadrilateral inscribed in the circle ω. The tangents to the circle at B and D intersect at M. Denote by I the intersection of $A C$ and $B D$. Then we have $(M I A C)=-1$.

Proof.

We have

$$
\frac{M C}{M A}=\frac{S_{M C D}}{S_{M A D}}=\frac{C D \cdot \sin \angle M D C}{A D \cdot \sin \angle M D A},
$$

and

$$
\frac{I C}{I A}=\frac{S_{I C B}}{S_{I A B}}=\frac{B C \cdot \sin \angle I B C}{B A \cdot \sin \angle I B A} .
$$

Moreover,

$$
\frac{C D}{A D}=\frac{B C}{A B}, \quad \sin \angle A B I=\sin \angle A D M, \quad \sin \angle I B C=\sin \angle M D C .
$$

Combining these, we get $\frac{M C}{M A}=\frac{I C}{I A}$, which follows that $(M I C A)=-1$. The proof is completed.

Comment: Let a point M outside the circle (O). Draw 2 tangents $M A, M B$ to (O). A secant through M intersects (O) at P, Q and cuts $A B$ at N. Then $(M N P Q)=-1$.

Property 1.5. Let $A B C D$ be a harmonic quadrilateral inscribed in the circle ω which has center O. The tangents to the circle at B and D intersect at M. Denote by I the intersection of $O M$ and $B D$. Then $I B$ is an angle bisector of $\angle A I C$.

Proof. Line $A C$ meets line $B D$ at K. Then $(M K A C)=-1$. We have $I(M K A C)=-1$ and $I M$ is perpendicular to $I K$, hence $I M$ and $I K$ are the internal and external bisectors of $\angle A K C$, respectively. The proof is completed.

The Property 1.1. and Property 1.2. show another significant methods to prove that 3 points are collinear or 3 lines are concurrent. The Property 1.3. is beautiful and the 1.4. is the reason why this quadrilateral is called harmonic quadrilateral.

2 Applications

Problem 2.1. Consider a circle (O) and an arbitrary point A outside it. Let $A B$ and $A C$ be tangents from A to (O) and l be an arbitrary line through A intersecting the circle at D and E (so that A, D and E are collinear in this order). Consider a line l^{\prime} through D which is perpendicular to $O B$, and intesects $B C, B E$ at H, K respectively. Prove that $D H=H K$.

Proof.

The line $B C$ intersects the line $E D$ on the point I. Thus, we get that the quadrilateral $E C D B$ is harmonic, so $B(E D I A)=-1$. Furthermore, $D K \| A B$ since they are perpendicular to $O B$. Hence, H is the midpoint of the line $D K$, we conclude that $H D=H K$, as desired.

Problem 2.2. [Vietnam TST 2001] Given two circles ω_{1}, ω_{2} intersecting at A and B. Let l be any one of those common circles which tangents to ω_{1}, ω_{2} at P, T respectively. The tangents at P and T to the circle inscribing $\triangle A P T$ intersect at S. Denote by H the reflection of the point B in the sideline $P T$. Prove that A, H and S are collinear.
Proof.

It suffices to show that $A P H T$ is harmonic.
First, we prove that $A P H T$ is cyclic. Indeed, we have $\angle B P T=\angle P A B$ and $\angle B T P=\angle B A T$, which leads to $\angle B P T+\angle B T P=\angle P A T$ or $\angle P A T=\frac{\pi}{2}-\angle P B T=\frac{\pi}{2}-\angle P H T$. Thus, the quadrilateral $A P H T$ is cyclic.

Now denote by M the intersection of $A B$ and $P T$. We obtain that

$$
M B \cdot M A=M P^{2} \quad \text { and } \quad M B \cdot M A=M T^{2},
$$

which yield $M P=M T$.
Since $\triangle M P B$ is similar to $\triangle M A P, \frac{B P}{A P}=\frac{M B}{M P}$. In the same manner, $\frac{B T}{A T}=\frac{M B}{M T}$. Hence, $\frac{B P}{A P}=\frac{B T}{A T}$, which is $\frac{B P}{B T}=\frac{A P}{A T}$.

Furthermore, we have $B P=H P$ and $B T=H T$. Then $\frac{A P}{A T}=\frac{H P}{H T}$. For this reason, the quadrilateral $A P H T$ is harmonic. From Property 1.2., the claim follows which ends the proof.

Problem 2.3. Let $A B C D$ be a cyclic quadrilateral. Denote by P, Q and R the orthogonal projections of the point D on the lines $B C, C A$ and $A B$ respectively. Prove that $P Q=Q R$ iff the angle bisectors of $\angle A B C$ and $\angle A D C$ intersect at the point lies on $A C$.

Proof.

The 3 points P, Q, R are collinear, which follows from Simson's Line.
Let d be the line which passes through point B and is parallel to $P R$. d cuts the line $A C$ at point M. The angle bisectors of $\angle A B C$ and $\angle A D C$ converge at the point on $A C$ if and only if $\frac{B A}{B C}=\frac{D A}{D C}$. Moreover, $Q P=Q R$ is equivalent to $(M Q A C)=-1$. For these reasons, we need to show that $A B C D$ is harmonic iff $(M Q A C)=-1$.

To verify this, we construct some equalities

$$
\frac{A M}{A Q}=\frac{A B}{A R} \quad \text { and } \quad \frac{C M}{C Q}=\frac{C B}{C P} .
$$

On the other hand, since the triangles $D A R$ and $D C P$ are similar, we obtain $\frac{A R}{C P}=\frac{D A}{D C}$.
Combining these, we get $(M Q A C)=-1$ iff

$$
\frac{A B}{A R}=\frac{A M}{A Q}=\frac{C M}{C Q}=\frac{C B}{C P}
$$

which is equivalent to

$$
\frac{A B}{C B}=\frac{A R}{C P}=\frac{D A}{D C} .
$$

The proof is completed.
Problem 2.4. The incircle ω of $\triangle A B C$ has center I and touches $B C, C A, A B$ at D, E, F respectively. Let M be the intersection of $A D$ and $\omega(M \neq D)$. Denote by Y, Z the intesections of ω and $B M, C M$ respectively. Prove that $B Z, C Y$ and $A D$ are concurrent.

Proof.

Consider 2 harmonic quadrilaterals $M E Y D$ and $M F Z D$, we have

$$
M Y \cdot D E=2 M E \cdot D Y, \text { so } \frac{M Y}{Y C}=\frac{2 M E \cdot D Y}{Y C \cdot D E},
$$

and

$$
M Z \cdot D F=2 M F \cdot D Z, \text { so } \frac{B Z}{M Z}=\frac{B Z \cdot D F}{2 M F \cdot D Z} .
$$

Thus,

$$
\begin{equation*}
\frac{D C \cdot Y M \cdot Z B}{D B \cdot Y C \cdot Z M}=\left(\frac{D C}{D B}\right) \cdot\left(\frac{2 M E \cdot D Y}{Y C \cdot D E}\right) \cdot\left(\frac{B Z \cdot D F}{2 M F \cdot D Z}\right), \tag{1}
\end{equation*}
$$

Additionally, $M E D F$ is harmonic, so $\frac{M E}{M F}=\frac{D E}{D F}$. For this reason, (1) is equivalent to

$$
\frac{D C \cdot Y M \cdot Z B}{D B \cdot Y C \cdot Z M}=\left(\frac{D C}{D B}\right) \cdot\left(\frac{D Y}{D Z}\right) \cdot\left(\frac{B Z}{C Y}\right) .
$$

On the other hand, since $\frac{C Y}{D Y}=\frac{C D}{D M}$ and $\frac{B Z}{B D}=\frac{D Z}{D M}$, we have

$$
\left(\frac{D C}{D B}\right) \cdot\left(\frac{D Y}{D Z}\right) \cdot\left(\frac{B Z}{C Y}\right)=1 .
$$

Finally,

$$
\frac{D C \cdot Y M \cdot Z B}{D B \cdot Y C \cdot Z M}=1
$$

from Ceva's theorem, 3 lines $M D, B Y$ and $C Z$ are concurrent, which ends the proof.
From this problem, we claim that $E F, Y Z, B C$ are concurrent and $Z F, Y E, A D$ have the same property. Indeed, if $E F$ meets $B C$ at K then $(K D B C)=-1$ and if $Y Z$ cuts $B C$ at H then $(H D B C)=-1$ thanks to the concurrence of $M D, B Y$ and $C Z$. Thus, $K \equiv H$, as desired. Also, consider 2 triangles BZF and CYE, according to Desargues' theorem, ZF and $E Y$ meet at a point which lies on $A M$.

Problem 2.5. [Vietnam TST 2001] Given two circles ω_{1}, ω_{2} intersecting at A and B. The tangents to ω_{1} at A and B intersect at K. Denote by M the arbitrary point lies on ω_{1} $(M \neq A$ and $M \neq B) . A M$ intersects ω_{2} at $P, K M$ intesects ω_{1} at C, and $A C$ intesects ω_{2} at Q.
a) Prove that the midpoint of $P Q$ lies on $M C$.
b) Prove that $P Q$ passes through a fixed point when M varies on the circle ω_{1}.

Proof.

(a). Let $M K$ intersect $P Q$ at the point N, we will show that N is the midpoint of $P Q$.

We have $A M B C$ is harmonic, so $\frac{A C}{A M}=\frac{C B}{M B}$. We also have $\triangle M B P$ is similar to $\triangle C B Q$, so $\frac{C Q}{M P}=\frac{C B}{M B}$. From these, we obtain $\frac{A C}{A M}=\frac{C Q}{M P}$.

Apply Menelaus's theorem for triangle $A P Q$ with the secant line $M K N$, we get

$$
\left(\frac{N P}{N Q}\right) \cdot\left(\frac{M A}{M P}\right) \cdot\left(\frac{C Q}{C A}\right)=1,
$$

which leads us to $N P=N Q$ and implies that N is midpoint of $P Q$.
(b). $A K$ cuts the circle ω_{2} at a fixed point J. We will show that $B Q J P$ is harmonic.

We have that $\angle C M B=\angle B A C=\angle B P Q$ and $\angle M B C=\angle C A P=\angle P B Q$, so the triangles $C B M$ and $Q B P$ are similar. Hence, $\frac{B C}{B M}=\frac{B Q}{B P}$. Analogously, we also have $\frac{A C}{A M}=\frac{J Q}{J P}$. Additionally, $\frac{B C}{B M}=\frac{A C}{A M}$. Then $\frac{B Q}{B P}=\frac{J Q}{J P}$. Therefore, $B Q J P$ is a harmonic quadrilateral. Thus, $P Q$ passes through the intersection point I of two tangents at B and J to the circle ω_{2}. the proof is completed.

3 Problems

Problem 3.1. Consider a circle ω and an arbitrary point A outside it. Let $A B$ and $A C$ be tangents from A to ω and l_{1}, l_{2} be arbitrary lines through A intersecting the at M, Q and N, P respectively (so that A, M, Q and A, N, Q are two collinear sets of points in those orders). Prove that $B C, P M, Q N$ are concurrent.

Problem 3.2. Let $A B C$ be an isosceles triangle with $A B=A C$ and M be a midpoint of $B C$. Denote by P the point that satisfies $\angle A B P=\angle P C B$. Prove that $\angle B P M+\angle C P A=180^{\circ}$.

Problem 3.3. Consider a circle (O) and a fixed point M outside it. Let $M B$ be a tangent from M to (O) and l_{1} be an arbitrary line through M intersecting ω at A and C (so that M, A and C are collinear in this order). Consider an arbitrary parallel line to $M B$ that cuts $B A$ and $B C$ at N and P respectively. Denote by I a midpoint of $N P$. Prove that I belongs to a fixed line.

Problem 3.4. Let $A B C$ be a triangle inscribed in a circle ω. An arbitrary line through A intersects ω at E and the tangents to the circle at B and C at M and N respectively. Prove that there exist a fixed point on $E F$.

Problem 3.5. Let $A B C D$ be cyclic quadrilateral. Denote by L and N be midpoints of $A C$ and $B D$ respectively. Prove that $D B$ is an angle bisector of $\angle A N C$ iff $A C$ is an angle bisector of $\angle B L D$.

4 References

(1) FORUM GEOMETRICORUM - forumgeom.fau.edu/.
(2) AoPS Forum - www.artofproblemsolving.com.
(3) Harmonic Division, the beauty of Mathematics - Kim Luân.

