
ABOUT THE HARMONIC QUADRILATERAL
Phan Nguyễn Văn Trường - Lục Đình Khánh - Bùi Hà Đăng Quang

Abstract.

Exploring the world of geometry, we encounter a special quadrilateral with unique proper-
ties, known as the beautiful quadrilateral. Since the problems in this topic largely concerned
with the idea of harmonic points, a more appropriate term is harmonic quadrilateral. In this
small article, we represent some fundamental properties of harmonic quadrilateral and their
application in solving geometry problems.

1 Fundamental blocks

Definition 1.1. A cyclic quadrilateral for which the product of the opposite sides is the
same, is called a harmonic quadrilateral. In a particular case, a cyclic quadrilateral ABC D
such that AB

AD
= CB

C D
is a harmonic quadrilateral.

Example 1.1. Given a circle ω and a point M outside it. Let MA and MB be tangents to
the circle at A and B. Let l be an arbitrary line through M which intersects the circle at P
and Q. Then APBQ is a harmonic quadrilateral.

Proof.

O

A

P

B

Q M

It suffices to show that
AQ

AP
=

BQ

BP
. Since we have ∆MAQ is similar to ∆M PA,

AQ

AP
=

MQ

M P
.

Additionally, ∆MBQ is also similar to ∆M PB, so

BQ

BP
=

MQ

M P
.
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Combining these, we obtain the desired result. This implies that the quadrilateral AQBP
is harmonic. �

Comment: In the above example, we clearly observe that if a quadrilateral inscribed in a
circle has its two tangents at two opposite vertices met at a point that lies on its diagonal,
then the quadrilateral is harmonic. Naturally, we may wonder if the inversed statement
is correct: every harmonic quadrilateral inscribed in a circle has its two tangents at two
opposite vertices met at a point that lies on its diagonal. The answer will be revealed in
later part.

Property 1.1. Let the harmonic quadrilateral ABC D be inscribed the circle (O) and AB
BC
=

DA
DC
= k. Show that (O) and a circle of Apollonius with ratio k are orthocentric.

Proof.

O

B

I

D

A
E C

F

The internal and external bisector of ∠ABC intersect the line AC at E and F , respectively.
Note that the circle (I) with diameter EF is the circle of Apollonius with ratio k. Clearly,
B and D lie on (I). We only need to prove that IB is tangent to the circle (O).

Indeed, we have (AC ED) = −1 and I is the midpoint of EF then I E2 = IA · IC . Further-
more, since ∆IBE is the isosceles triangle with IB = I E, we deduce IB2 = IA · IC , which
implies that IB is tangent to the circle (O). The proof is completed. �

Property 1.2. The quadrilateral ABCB inscribed the circle (O) is harmonic iff AC , the
tangents to (O) at B and D are concurrent. (AC and BD are not diameters)

Proof. This property can be deduced from Example 1.1. and Property 1.1.. �

Property 1.3. In a harmonic quadrilateral ABC D, AC · BD = 2AB · C D = 2BC · AD.

Proof. Since ABC D is harmonic, AB
AD

CB
C D

On the other hand, the quadrilateral ABC D is cyclic. Then, applying Ptolemy’s theorem,
we get AC · BD = AB · C D+ AD · BC . Hence, AC · BD = 2AB · C D = 2BC · AD. �
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= , which is equivalent to AB · C D = AD · CB.



Property 1.4. Let ABC D be a harmonic quadrilateral inscribed in the circle ω. The tan-
gents to the circle at B and D intersect at M . Denote by I the intersection of AC and BD.
Then we have (M IAC) =−1.

Proof.

O

B

D

M

A

C

Q

P
I

N

We have
MC

MA
=

SMC D

SMAD
=

C D · sin∠M DC

AD · sin∠M DA
,

and
IC

IA
=

SICB

SIAB
=

BC · sin∠IBC

BA · sin∠IBA
.

Moreover,

C D

AD
=

BC

AB
, sin∠ABI = sin∠ADM , sin∠IBC = sin∠M DC .

Combining these, we get MC
MA
= IC

IA
, which follows that (M ICA) = −1. The proof is com-

pleted. �

Comment: Let a point M outside the circle (O). Draw 2 tangents MA, MB to (O). A secant
through M intersects (O) at P, Q and cuts AB at N . Then (MN PQ) =−1.

Property 1.5. Let ABC D be a harmonic quadrilateral inscribed in the circle ω which has
center O. The tangents to the circle at B and D intersect at M . Denote by I the intersection
of OM and BD. Then IB is an angle bisector of ∠AIC .

Proof. Line AC meets line BD at K . Then (MKAC) =−1. We have I(MKAC) =−1 and I M
is perpendicular to IK , hence I M and IK are the internal and external bisectors of ∠AKC ,
respectively. The proof is completed. �

The Property 1.1. and Property 1.2. show another significant methods to prove that
3 points are collinear or 3 lines are concurrent. The Property 1.3. is beautiful and the 1.4.
is the reason why this quadrilateral is called harmonic quadrilateral.
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2 Applications

Problem 2.1. Consider a circle (O) and an arbitrary point A outside it. Let AB and AC be
tangents from A to (O) and l be an arbitrary line through A intersecting the circle at D and
E (so that A, D and E are collinear in this order). Consider a line l ′ through D which is
perpendicular to OB, and intesects BC , BE at H, K respectively. Prove that DH = HK .
Proof.

OE

B

D

C

A
I

H

K

The line BC intersects the line ED on the point I . Thus, we get that the quadrilateral EC DB
is harmonic, so B(EDIA) =−1. Furthermore, DK ‖ AB since they are perpendicular to OB.
Hence, H is the midpoint of the line DK , we conclude that HD = HK , as desired. �

Problem 2.2. [Vietnam TST 2001] Given two circles ω1, ω2 intersecting at A and B. Let
l be any one of those common circles which tangents to ω1, ω2 at P, T respectively.
The tangents at P and T to the circle inscribing 4APT intersect at S. Denote by H the
reflection of the point B in the sideline PT . Prove that A, H and S are collinear.
Proof.

ω1

A

ω2

B

P T

H

S
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It suffices to show that APHT is harmonic.

First, we prove that APHT is cyclic. Indeed, we have ∠BPT = ∠PAB and ∠BT P = ∠BAT ,
which leads to ∠BPT + ∠BT P = ∠PAT or ∠PAT = π

2
− ∠PBT = π

2
− ∠PHT. Thus, the

quadrilateral APHT is cyclic.

Now denote by M the intersection of AB and PT. We obtain that

MB ·MA= M P2 and MB ·MA= M T 2,

which yield M P = M T.

Since∆M PB is similar to∆MAP, BP
AP
= MB

M P
. In the same manner, BT

AT
= MB

M T
. Hence, BP

AP
= BT

AT
,

which is BP
BT
= AP

AT
.

Furthermore, we have BP = HP and BT = HT. Then AP
AT
= HP

HT
. For this reason, the

quadrilateral APHT is harmonic. From Property 1.2., the claim follows which ends the
proof. �

Problem 2.3. Let ABC D be a cyclic quadrilateral. Denote by P, Q and R the orthogonal
projections of the point D on the lines BC , CA and AB respectively. Prove that PQ =QR iff
the angle bisectors of ∠ABC and ∠ADC intersect at the point lies on AC .

Proof.

B

A

D

C
M

R

Q

P

The 3 points P, Q, R are collinear, which follows from Simson’s Line.

Let d be the line which passes through point B and is parallel to PR. d cuts the line AC
at point M . The angle bisectors of ∠ABC and ∠ADC converge at the point on AC if and

BA
BC

DA
DC

we need to show that ABC D is harmonic iff (MQAC) =−1.

To verify this, we construct some equalities

AM

AQ
=

AB

AR
and

C M

CQ
=

CB

C P
.
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only if = . Moreover, QP = QR is equivalent to (MQAC) = −1. For these reasons,



On the other hand, since the triangles DAR and DC P are similar, we obtain AR
C P
= DA

DC
.

Combining these, we get (MQAC) =−1 iff

AB

AR
=

AM

AQ
=

C M

CQ
=

CB

C P

AB

CB
=

AR

C P
=

DA

DC
.

The proof is completed. �

Problem 2.4. The incircle ω of ∆ABC has center I and touches BC , CA, AB at D, E,
F respectively. Let M be the intersection of AD and ω (M 6= D). Denote by Y , Z the
intesections of ω and BM , C M respectively. Prove that BZ , CY and AD are concurrent.

Proof.

F

D

E

B

A

C

M

Z

Y

T

Consider 2 harmonic quadrilaterals M EY D and M F Z D, we have

MY · DE = 2M E · DY, so
MY

Y C
=

2M E · DY

Y C · DE
,

and

M Z · DF = 2M F · DZ , so
BZ

M Z
=

BZ · DF

2M F · DZ
.

Thus,
DC · Y M · ZB

DB · Y C · Z M
=
�

DC

DB

�

·
�

2M E · DY

Y C · DE

�

·
�

BZ · DF

2M F · DZ

�

, (1).

M E
M F

DE
DF

DC · Y M · ZB

DB · Y C · Z M
=
�

DC

DB

�

·
�

DY

DZ

�

·
�

BZ

CY

�

.
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which is equivalent to

Additionally, M EDF is harmonic, so = . For this reason, (1) is equivalent to



On the other hand, since CY
DY
= C D

DM
and BZ

BD
= DZ

DM
, we have

�

DC

DB

�

·
�

DY

DZ

�

·
�

BZ

CY

�

= 1.

Finally,
DC · Y M · ZB

DB · Y C · Z M
= 1,

from Ceva’s theorem, 3 lines M D, BY and C Z are concurrent, which ends the proof. �

From this problem, we claim that EF, Y Z , BC are concurrent and Z F, Y E, AD have the
same property. Indeed, if EF meets BC at K then (KDBC) = −1 and if Y Z cuts BC at
H then (HDBC) = −1 thanks to the concurrence of M D, BY and C Z . Thus, K ≡ H, as
desired. Also, consider 2 triangles BZ F and CY E, according to Desargues’ theorem, Z F
and EY meet at a point which lies on AM .

Problem 2.5. [Vietnam TST 2001] Given two circles ω1, ω2 intersecting at A and B. The
tangents to ω1 at A and B intersect at K . Denote by M the arbitrary point lies on ω1

(M 6= A and M 6= B). AM intersects ω2 at P, KM intesects ω1 at C , and AC intesects ω2

at Q.

a) Prove that the midpoint of PQ lies on MC .

b) Prove that PQ passes through a fixed point when M varies on the circle ω1.

Proof.

ω1

A

ω2

B

M

PK
C

Q
J

I

N

(a). Let MK intersect PQ at the point N , we will show that N is the midpoint of PQ.

We have AMBC is harmonic, so AC
AM
= CB

MB
. We also have ∆MBP is similar to ∆CBQ, so

CQ
M P
= CB

MB
. From these, we obtain AC

AM
= CQ

M P
.
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Apply Menelaus’s theorem for triangle APQ with the secant line MKN , we get
�

N P

NQ

�

·
�

MA

M P

�

·
�

CQ

CA

�

= 1,

which leads us to N P = NQ and implies that N is midpoint of PQ.

(b). AK cuts the circle ω2 at a fixed point J . We will show that BQJ P is harmonic.

We have that ∠C MB = ∠BAC = ∠BPQ and ∠MBC = ∠CAP = ∠PBQ, so the triangles
CBM and QBP are similar. Hence, BC

BM
= BQ

BP
. Analogously, we also have AC

AM
= JQ

J P
. Addi-

tionally, BC
BM
= AC

AM
. Then BQ

BP
= JQ

J P
. Therefore, BQJ P is a harmonic quadrilateral. Thus, PQ

passes through the intersection point I of two tangents at B and J to the circle ω2. the
proof is completed. �

3 Problems

Problem 3.1. Consider a circle ω and an arbitrary point A outside it. Let AB and AC be
tangents from A to ω and l1, l2 be arbitrary lines through A intersecting the at M , Q and
N , P respectively (so that A, M , Q and A, N , Q are two collinear sets of points in those
orders). Prove that BC , PM , QN are concurrent.

Problem 3.2. Let ABC be an isosceles triangle with AB = AC and M be a midpoint of BC .
Denote by P the point that satisfies ∠ABP = ∠PCB. Prove that ∠BPM +∠C PA= 180o.

Problem 3.3. Consider a circle (O) and a fixed point M outside it. Let MB be a tangent
from M to (O) and l1 be an arbitrary line through M intersecting ω at A and C (so that
M , A and C are collinear in this order). Consider an arbitrary parallel line to MB that cuts

a fixed line.

Problem 3.4. Let ABC be a triangle inscribed in a circle ω. An arbitrary line through A
intersects ω at E and the tangents to the circle at B and C at M and N respectively. Prove
that there exist a fixed point on EF .

BD respectively. Prove that DB is an angle bisector of ∠ANC iff AC is an angle bisector of
∠BLD.
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BA and BC at N and P respectively. Denote by I a midpoint of N P. Prove that I belongs to

Problem 3.5. Let ABC D be cyclic quadrilateral. Denote by L and N be midpoints of AC and


